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What I’m working on

Motivation: to construct...
▶ certain functors (Reedy fibrant inverse diagrams),
▶ into certain categorical structures (sufficiently coherent wild

categories with families),

(similar: §4.5.5.2 of (Kolomatskaia-Shulman ’24))
▶ in HoTT (for reasons).

But you can understand the rest of the talk independently of the
above.
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Background to this talk

Model theory of MLTT without K
▶ Homotopical/∞-categorical models

(Awodey, Warren, Voevodsky, Kapulkin, Lumsdaine, Shulman, Uemura, ...)

▶ Internal models
(Dybjer, Chapman, Altenkirch, Kaposi, ...)
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Background to this talk

Model theory of MLTT without K
▶ Homotopical/∞-categorical models — not internal

(Awodey, Warren, Voevodsky, Kapulkin, Lumsdaine, Shulman, Uemura, ...)

▶ Internal models — not homotopical
(Dybjer, Chapman, Altenkirch, Kaposi, ...)
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Roadmap

Looking for an “internal model theory” of homotopical type theory:
Notion of higher model of HoTT in HoTT.

Main desiderata
Should include the syntax and the universe models (the paradigmatic
set-based and ∞-models).

Main obstacle
Models of HoTT are ∞-toposes, the universe is an (∞, 1)-category,
and we don’t know how to define (∞, 1)-categories in plain HoTT.
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Roadmap

Detour and try to find our way back to a solution:
Wild categories with coherence.

Fruit to pick on the way: HoTT-internal notion of “(n, 1)-categorical
model of type theory”?
(i.e. morphisms form (n − 1)-types)
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In this talk

In plain HoTT,
▶ Wild categories and pullbacks (Part 1)
▶ Wild categories with families (Part 2)
▶ Coherence conditions for each (throughout)
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Part 1
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Wild categories

Don’t know how to do ∞-categories, but still want to manipulate
structure that should be ∞-categorical, in plain HoTT.

Stepping stone solution: wild categories.
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Wild categories

Wild category = “precategory with arbitrary hom-types”.

Definition
A wild category 𝒞 consists of
▶ 𝒞0 : Type
▶ 𝒞(x , y) : Type for all x , y : 𝒞0

▶ id, _ ◦_ as usual

and unitors and associators:
▶ ρ : g ◦ id = g

▶ λ : id ◦ f = f

▶ α : (f ◦ g) ◦ h = f ◦ g ◦ h
These equality types are not propositions!
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Wild categories

Examples
▶ Any precategory (hence any strict category or univalent

1-category).
▶ Any universe type 𝒰:

▶ 𝒰0 :≡𝒰
▶ 𝒰(A, B) :≡ A→ B
▶ id, composition as for functions
▶ ρ, λ, α all refl.
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Wild categories

Diagrammatic notation:

x y

f

g

γ

objects x , y : 𝒞0

morphisms (1-cells) f , g : 𝒞(x , y)

equalities of morphisms (2-cells) γ : f = g

higher equalities (higher cells) . . .
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Whiskering

Given

x y zf

g

h

γ , γ : g = h

have

γ ∗ f : g ◦ f = h ◦ f
γ ∗ f :≡ ap (_ ◦ f ) γ

Similar for left whiskering.
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Properties of whiskering

Satisfies equations

refl ∗ f = refl

(γ ∗ f )−1 = γ−1 ∗ f
γ ∗ id = ρ · γ · ρ−1

etc. by induction.
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Equivalence and univalence

Definition
A morphism f : 𝒞(x , y) is a wild 𝒞-equivalence if it is biinvertible in
𝒞, i.e. has a section s and a retraction r so that

f ◦ s = id and r ◦ f = id

Write x ≃𝒞 y if there is a wild equivalence f : 𝒞(x , y).
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Equivalence and univalence

Notation
Instead of transport(P, p, x) we write

x ↓
P
p

Definition
For any equal objects e : x = y of a wild category 𝒞, there is a
“dependent identity” morphism

idd(e) : 𝒞(x , y)

idd(e) :≡ idx ↓
𝒞(x ,_)
e

By induction on e, idd(e) is a 𝒞-equivalence with two-sided inverse
idd(e−1).
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Equivalence and univalence

So with the proof that idd(e) is a 𝒞-equivalence, we get

x = y
idtoeqv𝒞−−−−−→ x ≃𝒞 y

in any wild category 𝒞.

idtoeqv𝒰 is equal to the HoTT book definition of idtoeqv.
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Equivalence and univalence

Definition
𝒞 is univalent if idtoeqv𝒞 is a (HoTT) equivalence.

Examples
▶ Univalent 1-categories 𝒞

(𝒞-equivalence and isomorphism are equivalent,
𝒞-univalence is 1-categorical univalence)

▶ The universe 𝒰
(𝒰-equivalence is type theoretic equivalence,
𝒰-univalence is type theoretic univalence)
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Equivalence and univalence

In a univalent wild category 𝒞, we have

ua𝒞 : x ≃𝒞 y → x = y

satisfying
idtoeqv𝒞(ua𝒞(f , u)) = (f , u).

Abusing notation, we say

idd(ua𝒞(f )) = f

whenever f is a 𝒞-equivalence.
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2-coherence
Familiar from bicategories:

Definition
A wild category 𝒞 has triangle coherences if for all

x
f−→ y

g−→ z

there is an equality of equalities

△f ,g : α · (g ∗ λ) = f ∗ ρ

making the triangle commute:

(g ◦ id) ◦ f g ◦ id ◦ f

g ◦ f

α

ρ∗f g∗λ
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2-coherence
Definition
A wild category 𝒞 has pentagon coherences if for all

v
f−→ w

g−→ x
h−→ y

k−→ z

there is an equality

△f ,g ,h,k : α · (g ∗ λ) = f ∗ ρ

filling the pentagon

((k ◦ h) ◦ g) ◦ f

(k ◦ h ◦ g) ◦ f (k ◦ h) ◦ g ◦ f

k ◦ (h ◦ g) ◦ f k ◦ h ◦ g ◦ f

α∗f α

α α

k∗α
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2-coherence

Definition
A wild category with triangle and pentagon coherences is a
2-coherent wild category.

Usual coherences hold, e.g. the other triangle equalities

(id ◦ g) ◦ f id ◦ g ◦ f

g ◦ f

α

λ∗f λ

and
(g ◦ f ) ◦ id g ◦ f ◦ id

g ◦ f

α

ρ g∗ρ

(Hart-Hou ’23) call 2-coherent wild categories “bicategories”.



22/72

Commuting squares

Generalize the theory of type theoretic pullbacks (Avigad, Kapulkin,
Lumsdaine ’15) to the 2-coherent wild setting.

Let 𝒞 be a 2-coherent wild category.
A cospan c in 𝒞 is an element

c ≡ (A,B,C , f , g) :Σ (A,B,C : 𝒞0) , 𝒞(A, C )×𝒞(B, C )

Diagrammatically,
c ≡ A

f−→ C
g←− B
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Commuting squares

Definition
A commuting square on c with source X is an element

(mA,mB , γ)

of type

CommSqc(X ) :≡Σ (mA : 𝒞(X , A)) (mB : 𝒞(X , B)) , f ◦mA = g ◦mB .

Diagrammatically,
X B

A C

mA

mB

g

f

γ

The equality 2-cell γ is relevant in wild commuting squares.
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Equality of commuting squares, 1

Characterizing the equality type of CommSqc(X ), we get:

Lemma
The equality

X B

A C

mA

mB

g

f

γ
=

X B

A C

mA
′

mB
′

g

f

γ′

in CommSqc(X ) is equivalent to the type of triples of equalities

eA : mA = mA
′

eB : mB = mB
′

η : γ = (f ∗ eA) · γ′ · (g ∗ eB)−1

by e.g. the fundamental theorem of identity types.



25/72

Operations on commuting squares

Relevant to talking about split comprehension in wild cwfs later.

Definition (Pasting)

If S :≡
X B

A C

mA

mB

g

f

γ
and S′ :≡

B D

C E

g

mD

g′

f ′

γ′

are commuting squares, then

S|S′ :≡
X D

A E

mA

mD◦mB

g′

f ′◦f

γ|γ′

is a commuting square on cospan (f ′ ◦ f , g ′) and source X .

γ|γ′ :≡ α · (f ′ ∗ γ) · α−1 · (mE ∗ γ′) · α

(not necessary to understand this talk)
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Operations on commuting squares

Definition (Precomposition)
If

S :≡
X B

A C

mA

mB

g

f

γ

is a commuting square with source X and m : 𝒞(Y , X ), there is a
square

S � m :≡
Y B

A C

mA◦m

mB◦m

g

f

e

where e :≡ α · (γ ∗m) · α−1.
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Operations on commuting squares

Lemma
Precomposition gives a right monoid action of morphisms on
commuting squares:

1. S � id = S

2. S � (g ◦ f ) = S � g � f .

Proof.
By unfolding definitions and calculating using:
▶ equations for whiskering
▶ the right identity triangle coherence for (1)
▶ the pentagon coherence for (2)
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Operations on commuting squares

Suppose

S :≡
X B

A C

mA

mB

g

f

γ

and e : X = Y .
We can transport S in the family

CommSq(f ,g)(_) : 𝒞0 → Type

along e to get a commuting square on the same cospan, but with
source Y .
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Operations on commuting squares

Corollary

S ↓
CommSq(f ,g)(_)
e = S � idd(e−1).

Proof.
By induction on e, reduces to showing S = S � id.
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Equality of commuting squares, 2

Recall that if
c :≡ A

f−→ C
g←− B

and X : 𝒞0 then

CommSqc(X ) ≡Σ (mA : 𝒞(X , A)) (mB : 𝒞(X , B)) , f ◦mA = g ◦mB .

Take the total space over X : 𝒞0 and define

CommSq(c) :≡Σ (X : 𝒞0) , CommSqc(X ).
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Equality of commuting squares, 2

Corollary
The equality

(X ,S) = (X ′,S′)

of elements of CommSq(c) is equivalent to the type of pairs

e : X = X ′

and
H : S = S′ � idd(e).

Proof.
By the equality of Σ-types and the previous characterization of
transport of commuting squares.
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Pullbacks

Definition
A commuting square

(P,P) :≡
P B

A C

πA

πB

g

f

p
: CommSq(c)

is a pullback if the family of precomposition maps

P �_ _ : Π (X : 𝒞0) 𝒞(X , P)→ CommSqc(X )

is a family of equivalences.

So being a pullback is a proposition. Have

is-pullback : CommSq(c)→ Type.



33/72

Pullbacks

Examples
▶ Wild pullbacks in strict categories are strict 1-categorical

pullbacks.
▶ Wild pullbacks in the universe wild categories 𝒰 are type

theoretic pullbacks (AKL ’15).
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Equality of pullbacks

Define the type of pullbacks on a cospan c ,

Pullback(c) :≡Σ (P : CommSq(c)) , is-pullback(P).

Equality of pullbacks is thus equality of the underlying commuting
squares.

Lemma
In a strict category, Pullback(c) is a set for any cospan c .

Proof.
Since CommSq(c) is a Σ-type of sets.
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Equality of pullbacks

Lemma
In a 2-coherent univalent wild category 𝒞, Pullback(c) is a
proposition for any cospan c .

Proof.
Suppose

(P,P), (P ′,P′) : Pullback(c).

Need an equality

h : P = P ′ such that P = P′
� idd(h).

From centers of contraction of (P � _)−1(P′) and (P′ � _)
−1

(P), get

m : 𝒞(P, P ′), m′ : 𝒞(P ′, P)

such that
P′

� m = P and P � m′ = P′.
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Equality of pullbacks

Lemma
In a 2-coherent univalent wild category 𝒞, Pullback(c) is a
proposition for any cospan c .

Proof (cont.)
This implies m is a 𝒞-equivalence with two-sided inverse m′. With univalence,
take

h :≡ ua𝒞(m) : P = P ′.

Then
P = P′

� m = P′
� idd(ua𝒞(m)) = P′

� idd(h)

as required.
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Pullback pasting

The familiar pullback pasting lemma. In 2-coherent wild categories, need to
construct a 3-cell between 2-cells.

Theorem
Suppose we have a diagram of commuting squares in a 2-coherent wild category

A′ A

B ′ B

C ′ C

f ′

i

f

g′

j
q

g

k

p

where the bottom square is a pullback. Then the top square is a pullback if and
only if the pasting is a pullback.
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Pullback pasting

Proof.
Uses a number of intermediate lemmas not shown (similar to (AKL
’15)).

Ultimately comes down to showing the equality of certain 2-cells as
in the outer boundary of the following coherence diagram:



39/72

k ◦ (g ′ ◦ f ′) ◦m k ◦ g ′ ◦ f ′ ◦m

(k ◦ g ′ ◦ f ′) ◦m (k ◦ g ′) ◦ f ′ ◦m

((k ◦ g ′) ◦ f ′) ◦m (g ◦ j) ◦ f ′ ◦m

((g ◦ j) ◦ f ′) ◦m g ◦ j ◦ f ′ ◦m

(g ◦ j ◦ f ′) ◦m g ◦ (j ◦ f ′) ◦m

(g ◦ f ◦ i) ◦m g ◦ (f ◦ i) ◦m

((g ◦ f ) ◦ i) ◦m g ◦ f ◦ i ◦m

(g ◦ f ) ◦ i ◦m

k∗α

α−1 α−1

α−1∗m p∗(f ′◦m)
α

(p∗f ′)∗m α
α

α∗m g∗α−1

α

(g∗q)∗m g∗(q∗m)

α

α−1∗m g∗α

α α−1
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Pullback pasting

Proof (cont.)
Insert associator 2-cells α judiciously to decompose into commuting
regions:
▶ three pentagon coherences
▶ two commuting squares by properties of whiskering.

Get the horizontal pasting theorem by transposing pullback squares.
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Part 2
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Wild internal models of type theory

Develop Dybjer’s categories with families (cwf’s), generalized to wild categories
of contexts. I assume familiarity with 1-categorical cwf’s.

Brief recap, GAT of a 1-cwf:

Contexts Substitutions

Γ,∆ : 𝒞0 σ, τ : 𝒞(Γ, ∆)

𝒞-types 𝒞-terms Substitution in types Substitution in terms

Ty∆ : Type Tm∆ A : Type A[σ]T : Ty Γ a[σ]t : Tm Γ (A[σ]T)

Context ext. Substitution ext. Display map Generic element

∆.A : 𝒞0 (σ , t) : 𝒞(Γ, ∆.A) pA : 𝒞(∆.A, ∆) qA : Tm∆.A (A[p]TA
)

appropriately quantified.
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Higher cwfs in intensional type theory

GAT of a 1-cwf, cont.
Equations need transports along paths:

Functoriality

[id]T : A[id]T = A [◦]T : A[σ ◦ τ ]T = A[σ]T[τ ]T

[id]t : a[id]t = a ↓ [id]T
−1 [◦]t : a[σ ◦ τ ]t = a[σ]t[τ ]t ↓ [◦]T−1

Context comprehension

pβ : pA ◦ (σ , t) = σ qβ : q[σ , t]t = t ↓ [=pβ]T
−1·[◦]T

, η : (pA , qA) = idΓ.A , ◦ : (τ , t) ◦ σ = (τ ◦ σ , t[σ]t ↓ [◦]T−1)

For us, explicitly manipulating these transports is completely unavoidable.
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Higher cwfs in intensional type theory

For us, explicitly manipulating these transports is completely
unavoidable:
▶ Working in a higher setting: can no longer handwave transports

away by appealing to conservativity of extensional TT over
set-based fragments of HoTT.

▶ Want to find candidate coherence conditions: must look at the
paths we’re transporting along.

But in this talk I will mostly try to avoid burdening you with this.
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Wild cwfs

Definition
A wild cwf 𝒞 is a model of the GAT of a 1-cwf, where we replce the
1-category of contexts with a wild category of contexts.

Example
Any strict cwf is a wild cwf. In particular, the syntax QIIT
(Altenkirch-Kaposi ’16) is a wild cwf.
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Wild cwfs

Example (Universe model)
Any universe wild categorical 𝒰 can be given the structure of a wild
cwf:

Ty Γ :≡ Γ→ 𝒰 Γ-indexed type families

Tm Γ A :≡ ΠΓA Sections of A : Γ→ 𝒰

Substitution is function composition. If σ : Γ→ ∆, then

A : Ty∆ ≡ ∆→ 𝒰 =⇒ A[σ]T :≡ A ◦ σ : Γ→ 𝒰

a : Tm∆ A ≡ Π∆A =⇒ a[σ]t :≡ a ◦ σ : Π Γ (A ◦ σ)

Context extension is Σ, and
the equational components all hold by families of reflexivity proofs.
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Structural properties of wild cwfs

Important structural properties of 1-cwfs already hold homotopically
in wild cwfs.

Lemma
In any wild cwf 𝒞, terms are sections of display maps.

Tm Γ A ≃Σ (a : 𝒞(Γ, Γ.A)) , p ◦ a = idΓ

Lemma
Substitutions into extended contexts are pairs.

𝒞(Γ, ∆.A) ≃Σ (σ : 𝒞(Γ, ∆))Tm (A[σ]T)
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Structural properties of wild cwfs

Corollary
If σ : 𝒞(Γ, ∆.A) is a substitution into an extended context then

σ = (p ◦ σ , q[σ]t ↓ [◦]T
−1).

That is, every substitution σ into an extended context is determined
by its “initial segment”

p ◦ σ

and “last element”
q[σ]t.
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What we’re aiming for

Classically, cwf’s equivalent to full split comprehension categories.

We aim for a similar statement for sufficiently coherent wild cwfs,
including the syntax and the universe models.

Concretely, we will prove the following theorem.
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What we’re aiming for

Theorem
Given a cospan Γ

σ−→ ∆
pA←− ∆.A in the category of contexts of a

“2-precoherent” wild cwf 𝒞, there is a weak pullback

Pσ,A :≡
Γ.A[σ]T ∆.A

Γ ∆

σ . A

p p

σ

pβ−1

When 𝒞 is set-based or a universe, these squares are pullbacks for all
σ and A, and further this choice of pullbacks is split. . .
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What we’re aiming for

Theorem
. . . for any pullbacks

Pσ◦τ,A ≡
B.A[σ ◦ τ ]T ∆.A

B ∆

(σ◦τ) . A

pβ−1

σ◦τ

and

Pτ,A[σ]T
| Pσ,A ≡

B.A[σ]T[τ ]T Γ.A[σ]T ∆.A

B Γ ∆

τ . A[σ]T σ . A

pβ−1

τ

pβ−1

σ

the equality of pullbacks

Pσ◦τ,A = (Pτ,A[σ]T
| Pσ,A)

is contractible.
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What we’re aiming for

Abstracting these properties will give us a definition of 2-coherent
wild cwf that we hope will be of further use.
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Coherence for context extension

A technical excursion.

Lemma
Suppose

Γ
σ

⇒
τ

∆.A

are parallel arrows into an extended context.
There is an equivalence sub= that takes

e1 : p ◦ σ = p ◦ τ

and
e2 : q[σ]t ↓ [◦]T−1·[=e1]T·[◦]T

= q[τ ]t,

and gives an equality
sub=(e1, e2) : σ = τ.

Intuitively, this is because of the previous corollary: extended substitutions are
determined by their initial segment and last element.
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Coherence for context extension

Note the following composition of maps:

Σ (e : p ◦ σ = p ◦ τ) , q[σ]t ↓ [◦]T
−1·[=e]T·[◦]T

= q[τ ]t
sub=−−−→ σ = τ
p∗_
−−→ p ◦ σ = p ◦ τ

It will be useful later if this composition were equal to the first
projection.
Motivates the following definition.
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Coherence for context extension
Recall the cwf equations

pβ : p ◦ (σ , t) = σ

, η : (p , q) = id

, ◦ : (τ , t) ◦ σ = (τ ◦ σ , t[σ]t ↓ [◦]T−1)

They interact with unitors and associators of the underlying wild category of
contexts in the following diagrams:

pA ◦ (pA , qA)

pA ◦ id pA

pA∗ , η pβ

ρ

and

pA ◦ (pA , qA) ◦ σ (pA ◦ (pA , qA)) ◦ σ

pA ◦ (pA ◦ σ , qA[σ]t ↓ [◦]T−1) pA ◦ σ

α−1

pA∗ , ◦ pβ∗σ

pβ
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Coherence for context extension

Definition
We say that a wild cwf 𝒞 has coherators for context extension if
every diagram of the previous two forms commutes.

Examples
Cwfs with precategories of contexts automatically satisfy coherences
on 2-cells. In universe cwfs, the diagrams above reduce to
composites of refl paths, and commute definitionally.
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Coherence for context extension

Lemma
If 𝒞 has coherators for context extension then the composition

Σ (e : p ◦ σ = p ◦ τ) , q[σ]t ↓ [◦]T
−1·[=e]T·[◦]T

= q[τ ]t
sub=−−−→ σ = τ
p∗_
−−→ p ◦ σ = p ◦ τ

is equal to the first projection.
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Coherence for context extension

Proof.
Technical and calculation-heavy, involves this coherence pasting diagram:

pA ◦ (pA , qA) ◦ σ pA ◦ id ◦ σ

(pA ◦ (pA , qA)) ◦ σ (pA ◦ id) ◦ σ

pA ◦ (pA ◦ σ , qA[σ]t ↓ [◦]T−1) pA ◦ σ

p∗( , η∗σ)

α−1

p∗ , ◦ p∗λ

(p∗ , η)∗σ

pβ∗σ⟳

α

ρ∗σ⟳

pβ
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Type pentagonators

Type substitution also interacts with the associators of the category of contexts:

For all contexts and substitutions

Γ
ρ−→ ∆

σ−→ E τ−→ Z

and 𝒞-types A : Ty Z, there is the pentagon of canonical equalities

A[τ ◦ σ ◦ ρ]T

A[(τ ◦ σ) ◦ ρ]T A[τ ]T[σ ◦ ρ]T

A[τ ◦ σ]T[ρ]T A[τ ]T[σ]T[ρ]T

[=α−1]T
[◦]T

[◦]T [◦]T

[◦]T[ρ]T
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Type pentagonators

Definition
A wild cwf 𝒞 has type pentagonators if all equality pentagons of the
previous form commute.

Examples
Set-based and universe cwfs have trivial type pentagonators (in
different ways).
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2-precoherent cwfs

Now we can define

Definition
A wild cwf 𝒞 is 2-precoherent if it has
▶ a 2-coherent category of contexts (i.e. triangle and pentagon

coherences for ρ, λ, α),
▶ type pentagonators,
▶ coherators for context extension.
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Wild substitution in types

Theorem
Suppose that 𝒞 is a 2-precoherent cwf, σ : 𝒞(Γ, ∆) a substitution
and A : Ty∆. Then the substitution

σ .A :≡ (σ ◦ pA[σ]T , qA[σ]T ↓
Tm
[◦]T

−1)

makes the commuting square

Pσ,A :≡
Γ.A[σ]T ∆.A

Γ ∆

σ . A

p p

σ

pβ−1

a weak pullback in 𝒞.
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Wild substitution in types

This means that for every outer commuting square S as in

B

Γ.A[σ]T ∆.A

Γ ∆

ρ

τ

µ

σ . A

p p

σ

pβ−1

with γ : σ ◦ τ = pA ◦ ρ, there is a mediating substitution

µ : 𝒞(B, Γ.A[σ]T)

such that
Pσ,A � µ = S.
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Wild substitution in types

Proof sketch.
In the following, all smiley faces are equalities.

1. Follow your nose and define

µ :≡ (τ , q[ρ]t ↓ )

2. By characterization of equality of pullbacks, to show that

Pσ,A � µ = S

we can construct equalities

δ : p ◦ µ = τ

ϵ : σ . A ◦ µ = ρ

such that there is an equality of 2-cells

α−1 · (pβ−1 ∗ µ) · α = (σ ∗ δ) · γ · (p ∗ ϵ)−1.
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Wild substitution in types

Proof sketch (cont.)

3. By definition of µ, can take

δ :≡ pβ : p ◦ µ = τ.

4. ϵ : σ . A ◦ µ = ρ needs to be an equality of extended substitutions. Define

ϵ :≡ sub=(ϵ0, ϵ1),

for which we need equalities

ϵ0 : p ◦ σ . A ◦ µ = p ◦ ρ

and
ϵ1 : q[σ . A ◦ µ]t ↓ (ϵ0)

= q[ρ]t.
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Wild substitution in types

Proof sketch (cont.)

5. We can construct
ϵ0 :≡

By calculation, constructing ϵ1 is equivalent to showing that

q[ρ]t ↓ ( )
= q[ρ]t.

6. We do this by showing that
= refl.

Some path algebra shows that is equal to the outer boundary of the
following diagram:
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Wild substitution in types

. . . which decomposes into type pentagonators and commuting squares.
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Wild substitution in types

Proof sketch (cont.)

7. That completes the construction of δ and ϵ. What’s left is to show that

α−1 · (pβ−1 ∗ µ) · α = (σ ∗ pβ) · γ · (p ∗ sub=(ϵ0, ϵ1))
−1.

Simplifying
p ∗ sub=(ϵ0, ϵ1) = ϵ0

on the right hand side, the rest becomes a straightforward calculation.
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Wild substitution in types

So substitution in types is weak pullback in 2-precoherent cwfs.

Lemma
If 𝒞 is set-based, the Pσ,A are pullbacks.

Proof.
Using the fact that CommSqc(X ) are sets in precategories.

Lemma
If 𝒞 = 𝒰 is a universe wild cwf, the Pσ,A are pullbacks.

Proof.
By instantiating the type theoretic pullback and Corollary 4.1.9 of
(AKL ’15).
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Split comprehension

Theorem
Suppose 𝒞 is a set-based or universe wild cwf. Then for all

B τ−→ Γ
σ−→ ∆

and A : Ty∆, the equality of pullbacks

Pσ◦τ,A = (Pτ,A[σ]T
| Pσ,A)

is contractible.

Proof.
For any cospan c , Pullback(c) is always a set in set-based and
2-coherent univalent wild categories. So the equality is a proposition.
It is inhabited by calculation and a simple lemma I’ll elide in this
talk.
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2-coherent wild cwfs

Abstracting these properties, we arrive at a candidate

Definition
A 2-coherent wild cwf is a 2-precoherent cwf such that
▶ for every σ and A, Pσ,A is a pullback
▶ for every τ , σ and A,

Pσ◦τ,A = (Pτ,A[σ]T
| Pσ,A)

is contractible.

Examples
Any set-based cwf, and any universe wild cwf.
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Further investigations

▶ Are 2-coherent cwfs a good notion of “higher cwf with
hom-groupoids”?

▶ Determine the initial model of 2-coherent cwfs
▶ Study wild natural models instead of wild cwfs
▶ For me, use 2-coherent wild cwfs to organize the construction

of Reedy fibrant inverse diagrams.
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