

Pullbacks and coherences for wild cwf's

Josh Chen

University of Nottingham

23 Oct 2024

ASSUME Meeting 7

University of Birmingham

What I'm working on

Motivation: to construct...

- ▶ certain functors (Reedy fibrant inverse diagrams),
- ▶ into certain categorical structures (sufficiently coherent wild categories with families),

(similar: §4.5.5.2 of (Kolomatskaia-Shulman '24))

- ▶ in HoTT (for reasons).

But you can understand the rest of the talk independently of the above.

Background to this talk

Model theory of MLTT without K

- ▶ Homotopical/ ∞ -categorical models
(Awodey, Warren, Voevodsky, Kapulkin, Lumsdaine, Shulman, Uemura, ...)
- ▶ Internal models
(Dybjer, Chapman, Altenkirch, Kaposi, ...)

Background to this talk

Model theory of MLTT without K

- ▶ Homotopical/ ∞ -categorical models — **not internal**
(Awodey, Warren, Voevodsky, Kapulkin, Lumsdaine, Shulman, Uemura, ...)
- ▶ Internal models — **not homotopical**
(Dybjer, Chapman, Altenkirch, Kaposi, ...)

Roadmap

Looking for an “internal model theory” of homotopical type theory:
Notion of higher model of HoTT *in HoTT*.

Main desiderata

Should include the syntax and the universe models (the paradigmatic set-based and ∞ -models).

Main obstacle

Models of HoTT are ∞ -toposes, the universe is an $(\infty, 1)$ -category, and we don't know how to define $(\infty, 1)$ -categories in plain HoTT.

Roadmap

Detour and try to find our way back to a solution:
Wild categories with coherence.

Fruit to pick on the way: HoTT-internal notion of “ $(n, 1)$ -categorical model of type theory”?
(i.e. morphisms form $(n - 1)$ -types)

In this talk

In plain HoTT,

- ▶ Wild categories and pullbacks (Part 1)
- ▶ Wild categories with families (Part 2)
- ▶ Coherence conditions for each (throughout)

Part 1

Wild categories

Don't know how to do ∞ -categories, but still want to manipulate structure that *should* be ∞ -categorical, in plain HoTT.

Stepping stone solution: *wild* categories.

Wild categories

Wild category = “precategory with arbitrary hom-types”.

Definition

A *wild category* \mathcal{C} consists of

- ▶ $\mathcal{C}_0 : \text{Type}$
- ▶ $\mathcal{C}(x, y) : \text{Type}$ for all $x, y : \mathcal{C}_0$
- ▶ $\text{id}, _ \circ _ \text{ as usual}$

and *unitors and associators*:

- ▶ $\rho : g \circ \text{id} = g$
- ▶ $\lambda : \text{id} \circ f = f$
- ▶ $\alpha : (f \circ g) \circ h = f \circ g \circ h$

These equality types are **not** propositions!

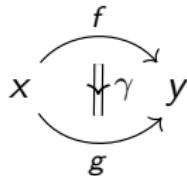
Wild categories

Examples

- ▶ Any precategory (hence any strict category or univalent 1-category).
- ▶ Any universe type \mathcal{U} :
 - ▶ $\mathcal{U}_0 := \mathcal{U}$
 - ▶ $\mathcal{U}(A, B) := A \rightarrow B$
 - ▶ id, composition as for functions
 - ▶ ρ, λ, α all refl.

Wild categories

Diagrammatic notation:



objects $x, y : \mathcal{C}_0$

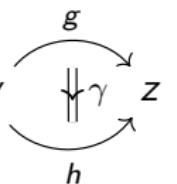
morphisms (1-cells) $f, g : \mathcal{C}(x, y)$

equalities of morphisms (2-cells) $\gamma : f = g$

higher equalities (higher cells) \dots

Whiskering

Given

$$x \xrightarrow{f} y \xrightarrow{\gamma} z, \quad \gamma : g = h$$


have

$$\gamma * f : g \circ f = h \circ f$$

$$\gamma * f \equiv \text{ap}(_ \circ f) \gamma$$

Similar for left whiskering.

Properties of whiskering

Satisfies equations

$$\mathsf{refl} * f = \mathsf{refl}$$

$$(\gamma * f)^{-1} = \gamma^{-1} * f$$

$$\gamma * \mathsf{id} = \rho \cdot \gamma \cdot \rho^{-1}$$

etc. by induction.

Equivalence and univalence

Definition

A morphism $f : \mathcal{C}(x, y)$ is a *wild \mathcal{C} -equivalence* if it is biinvertible in \mathcal{C} , i.e. has a section s and a retraction r so that

$$f \circ s = \text{id} \quad \text{and} \quad r \circ f = \text{id}$$

Write $x \simeq_{\mathcal{C}} y$ if there is a wild equivalence $f : \mathcal{C}(x, y)$.

Equivalence and univalence

Notation

Instead of $\text{transport}(P, p, x)$ we write

$$x \downarrow_p^P$$

Definition

For any equal objects $e : x = y$ of a wild category \mathcal{C} , there is a “dependent identity” morphism

$$\begin{aligned}\text{idd}(e) &: \mathcal{C}(x, y) \\ \text{idd}(e) &:= \text{id}_{x \downarrow e}^{\mathcal{C}(x, _)}\end{aligned}$$

By induction on e , $\text{idd}(e)$ is a \mathcal{C} -equivalence with two-sided inverse $\text{idd}(e^{-1})$.

Equivalence and univalence

So with the proof that $\text{idd}(e)$ is a \mathcal{C} -equivalence, we get

$$x = y \xrightarrow{\text{idtoeqv}_{\mathcal{C}}} x \simeq_{\mathcal{C}} y$$

in any wild category \mathcal{C} .

$\text{idtoeqv}_{\mathcal{U}}$ is equal to the HoTT book definition of idtoeqv .

Equivalence and univalence

Definition

\mathcal{C} is *univalent* if $\text{idtoeqv}_{\mathcal{C}}$ is a (HoTT) equivalence.

Examples

- ▶ Univalent 1-categories \mathcal{C}
(\mathcal{C} -equivalence and isomorphism are equivalent,
 \mathcal{C} -univalence is 1-categorical univalence)
- ▶ The universe \mathcal{U}
(\mathcal{U} -equivalence is type theoretic equivalence,
 \mathcal{U} -univalence is type theoretic univalence)

Equivalence and univalence

In a univalent wild category \mathcal{C} , we have

$$\text{ua}_{\mathcal{C}} : x \simeq_{\mathcal{C}} y \rightarrow x = y$$

satisfying

$$\text{idtoeqv}_{\mathcal{C}}(\text{ua}_{\mathcal{C}}(f, u)) = (f, u).$$

Abusing notation, we say

$$\text{idd}(\text{ua}_{\mathcal{C}}(f)) = f$$

whenever f is a \mathcal{C} -equivalence.

2-coherence

Familiar from bicategories:

Definition

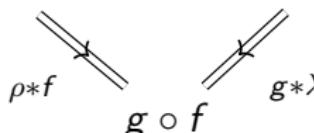
A wild category \mathcal{C} has *triangle coherences* if for all

$$x \xrightarrow{f} y \xrightarrow{g} z$$

there is an equality of equalities

$$\Delta_{f,g} : \alpha \cdot (g * \lambda) = f * \rho$$

making the triangle commute:

$$(g \circ \text{id}) \circ f \xrightarrow{\alpha} g \circ \text{id} \circ f$$


2-coherence

Definition

A weak category \mathcal{C} has *pentagon coherences* if for all

$$v \xrightarrow{f} w \xrightarrow{g} x \xrightarrow{h} y \xrightarrow{k} z$$

there is an equality

$$\Delta_{f,g,h,k} : \alpha \cdot (g * \lambda) = f * \rho$$

filling the pentagon

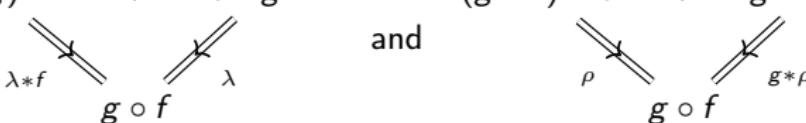
$$\begin{array}{ccc} ((k \circ h) \circ g) \circ f & & \\ \alpha * f \swarrow \nearrow & & \swarrow \nearrow \alpha \\ (k \circ h \circ g) \circ f & & (k \circ h) \circ g \circ f \\ \alpha \swarrow \nearrow & & \swarrow \nearrow \alpha \\ k \circ (h \circ g) \circ f & \xrightarrow{k * \alpha} & k \circ h \circ g \circ f \end{array}$$

2-coherence

Definition

A wild category with triangle and pentagon coherences is a *2-coherent wild category*.

Usual coherences hold, e.g. the other triangle equalities

$$(id \circ g) \circ f \xrightarrow{\alpha} id \circ g \circ f \quad \text{and} \quad (g \circ f) \circ id \xrightarrow{\alpha} g \circ f \circ id$$


(Hart-Hou '23) call 2-coherent wild categories “bicategories”.

Commuting squares

Generalize the theory of type theoretic pullbacks (Avigad, Kapulkin, Lumsdaine '15) to the 2-coherent wild setting.

Let \mathcal{C} be a 2-coherent wild category.

A *cospan* c in \mathcal{C} is an element

$$c \equiv (A, B, C, f, g) : \sum_{(A, B, C : \mathcal{C}_0)} \mathcal{C}(A, C) \times \mathcal{C}(B, C)$$

Diagrammatically,

$$c \equiv A \xrightarrow{f} C \xleftarrow{g} B$$

Commuting squares

Definition

A *commuting square on c with source X* is an element

$$(m_A, m_B, \gamma)$$

of type

$$\text{CommSq}_c(X) := \sum (m_A : \mathcal{C}(X, A)) (m_B : \mathcal{C}(X, B)), f \circ m_A = g \circ m_B.$$

Diagrammatically,

$$\begin{array}{ccc} X & \xrightarrow{m_B} & B \\ m_A \downarrow & \nearrow \gamma & \downarrow g \\ A & \xrightarrow{f} & C \end{array}$$

The equality 2-cell γ is relevant in wild commuting squares.

Equality of commuting squares, 1

Characterizing the equality type of $\text{CommSq}_c(X)$, we get:

Lemma

The equality

$$\begin{array}{ccc} X & \xrightarrow{m_B} & B \\ m_A \downarrow & \cancel{\gamma} & \downarrow g \\ A & \xrightarrow{f} & C \end{array} = \begin{array}{ccc} X & \xrightarrow{m_B'} & B \\ m_A' \downarrow & \cancel{\gamma'} & \downarrow g \\ A & \xrightarrow{f} & C \end{array}$$

in $\text{CommSq}_c(X)$ is equivalent to the type of triples of equalities

$$e_A : m_A = m_A'$$

$$e_B : m_B = m_B'$$

$$\eta : \gamma = (f * e_A) \cdot \gamma' \cdot (g * e_B)^{-1}$$

by e.g. the fundamental theorem of identity types.

Operations on commuting squares

Relevant to talking about split comprehension in wild cwf's later.

Definition (Pasting)

$$\text{If } \mathfrak{S} := \begin{array}{ccc} X & \xrightarrow{m_B} & B \\ m_A \downarrow & \cancel{\gamma} & \downarrow g \\ A & \xrightarrow{f} & C \end{array} \quad \text{and} \quad \mathfrak{S}' := \begin{array}{ccc} B & \xrightarrow{m_D} & D \\ g \downarrow & \cancel{\gamma'} & \downarrow g' \\ C & \xrightarrow{f'} & E \end{array}$$

are commuting squares, then

$$\mathfrak{S}|\mathfrak{S}' := \begin{array}{ccc} X & \xrightarrow{m_D \circ m_B} & D \\ m_A \downarrow & \cancel{\gamma|\gamma'} & \downarrow g' \\ A & \xrightarrow{f' \circ f} & E \end{array}$$

is a commuting square on cospan $(f' \circ f, g')$ and source X .

$$\gamma|\gamma' := \alpha \cdot (f' * \gamma) \cdot \alpha^{-1} \cdot (m_E * \gamma') \cdot \alpha$$

(not necessary to understand this talk)

Operations on commuting squares

Definition (Precomposition)

If

$$\mathfrak{S} := \begin{array}{ccc} X & \xrightarrow{m_B} & B \\ m_A \downarrow & \cancel{\gamma} & \downarrow g \\ A & \xrightarrow{f} & C \end{array}$$

is a commuting square with source X and $m : \mathcal{C}(Y, X)$, there is a square

$$\mathfrak{S} \square m := \begin{array}{ccc} Y & \xrightarrow{m_B \circ m} & B \\ m_A \circ m \downarrow & \cancel{\gamma_e} & \downarrow g \\ A & \xrightarrow{f} & C \end{array}$$

where $e := \alpha \cdot (\gamma * m) \cdot \alpha^{-1}$.

Operations on commuting squares

Lemma

Precomposition gives a right monoid action of morphisms on commuting squares:

1. $\mathfrak{S} \square id = \mathfrak{S}$
2. $\mathfrak{S} \square (g \circ f) = \mathfrak{S} \square g \square f.$

Proof.

By unfolding definitions and calculating using:

- ▶ equations for whiskering
- ▶ the right identity triangle coherence for (1)
- ▶ the pentagon coherence for (2)

Operations on commuting squares

Suppose

$$\mathfrak{S} := \begin{array}{ccc} X & \xrightarrow{m_B} & B \\ m_A \downarrow & \cancel{\gamma} & \downarrow g \\ A & \xrightarrow{f} & C \end{array}$$

and $e : X = Y$.

We can transport \mathfrak{S} in the family

$$\text{CommSq}_{(f,g)}(_) : \mathcal{C}_0 \rightarrow \text{Type}$$

along e to get a commuting square on the same cospan, but with source Y .

Operations on commuting squares

Corollary

$$\mathfrak{S}_{\downarrow e}^{\text{CommSq}_{(f,g)}(_) } = \mathfrak{S} \square \text{id}(e^{-1}).$$

Proof.

By induction on e , reduces to showing $\mathfrak{S} = \mathfrak{S} \square \text{id}$. □

Equality of commuting squares, 2

Recall that if

$$c \ : \equiv \ A \xrightarrow{f} C \xleftarrow{g} B$$

and $X : \mathcal{C}_0$ then

$$\text{CommSq}_c(X) \equiv \sum (m_A : \mathcal{C}(X, A)) (m_B : \mathcal{C}(X, B)), \ f \circ m_A = g \circ m_B.$$

Take the total space over $X : \mathcal{C}_0$ and define

$$\text{CommSq}(c) : \equiv \sum (X : \mathcal{C}_0), \ \text{CommSq}_c(X).$$

Equality of commuting squares, 2

Corollary

The equality

$$(X, \mathfrak{S}) = (X', \mathfrak{S}')$$

of elements of $\text{CommSq}(c)$ is equivalent to the type of pairs

$$e : X = X'$$

and

$$H : \mathfrak{S} = \mathfrak{S}' \square \text{id}(e).$$

Proof.

By the equality of Σ -types and the previous characterization of transport of commuting squares. □

Pullbacks

Definition

A commuting square

$$(P, \mathfrak{P}) \text{ :} \equiv \begin{array}{ccc} P & \xrightarrow{\pi_B} & B \\ \pi_A \downarrow & \swarrow \mathfrak{p} & \downarrow g \\ A & \xrightarrow{f} & C \end{array} : \text{CommSq}(c)$$

is a *pullback* if the family of precomposition maps

$$\mathfrak{P} \square _ _ : \prod (x : \mathcal{C}_0) \mathcal{C}(X, P) \rightarrow \text{CommSq}_c(X)$$

is a family of equivalences.

So being a pullback is a proposition. Have

$$\text{is-pullback} : \text{CommSq}(c) \rightarrow \text{Type}.$$

Pullbacks

Examples

- ▶ Wild pullbacks in strict categories are strict 1-categorical pullbacks.
- ▶ Wild pullbacks in the universe wild categories \mathcal{U} are type theoretic pullbacks (AKL '15).

Equality of pullbacks

Define the type of pullbacks on a cospan c ,

$$\text{Pullback}(c) := \sum (\mathfrak{P} : \text{CommSq}(c)), \text{is-pullback}(\mathfrak{P}).$$

Equality of pullbacks is thus equality of the underlying commuting squares.

Lemma

In a strict category, $\text{Pullback}(c)$ is a set for any cospan c .

Proof.

Since $\text{CommSq}(c)$ is a Σ -type of sets. □

Equality of pullbacks

Lemma

In a 2-coherent univalent wild category \mathcal{C} , $\text{Pullback}(c)$ is a proposition for any cospan c .

Proof.

Suppose

$$(P, \mathfrak{P}), (P', \mathfrak{P}') : \text{Pullback}(c).$$

Need an equality

$$h : P = P' \quad \text{such that} \quad \mathfrak{P} = \mathfrak{P}' \square \text{idd}(h).$$

From centers of contraction of $(\mathfrak{P} \square _)^{-1}(\mathfrak{P}')$ and $(\mathfrak{P}' \square _)^{-1}(\mathfrak{P})$, get

$$m : \mathcal{C}(P, P'), \quad m' : \mathcal{C}(P', P)$$

such that

$$\mathfrak{P}' \square m = \mathfrak{P} \quad \text{and} \quad \mathfrak{P} \square m' = \mathfrak{P}'.$$

Equality of pullbacks

Lemma

In a 2-coherent univalent wild category \mathcal{C} , $\text{Pullback}(c)$ is a proposition for any cospan c .

Proof (cont.)

This implies m is a \mathcal{C} -equivalence with two-sided inverse m' . With univalence, take

$$h := \text{ua}_{\mathcal{C}}(m) : P = P'.$$

Then

$$\mathfrak{P} = \mathfrak{P}' \square m = \mathfrak{P}' \square \text{idd}(\text{ua}_{\mathcal{C}}(m)) = \mathfrak{P}' \square \text{idd}(h)$$

as required. □

Pullback pasting

The familiar pullback pasting lemma. In 2-coherent wild categories, need to construct a 3-cell between 2-cells.

Theorem

Suppose we have a diagram of commuting squares in a 2-coherent wild category

$$\begin{array}{ccc} A' & \xrightarrow{i} & A \\ f' \downarrow & \nearrow q & \downarrow f \\ B' & \xrightarrow{j} & B \\ g' \downarrow & \nearrow p & \downarrow g \\ C' & \xrightarrow{k} & C \end{array}$$

where the bottom square is a pullback. Then the top square is a pullback if and only if the pasting is a pullback.

Pullback pasting

Proof.

Uses a number of intermediate lemmas not shown (similar to (AKL '15)).

Ultimately comes down to showing the equality of certain 2-cells as in the outer boundary of the following coherence diagram:

$$\begin{array}{ccc}
k \circ (g' \circ f') \circ m & \xrightarrow{k * \alpha} & k \circ g' \circ f' \circ m \\
\alpha^{-1} \cancel{\nearrow} & & \cancel{\nearrow} \alpha^{-1} \\
(k \circ g' \circ f') \circ m & & (k \circ g') \circ f' \circ m \\
\alpha^{-1} * m \cancel{\nearrow} & & \cancel{\nearrow} p * (f' * m) \\
((k \circ g') \circ f') \circ m & & (g \circ j) \circ f' \circ m \\
(p * f') * m \cancel{\nearrow} & & \cancel{\nearrow} \alpha \\
((g \circ j) \circ f') \circ m & & g \circ j \circ f' \circ m \\
\alpha * m \cancel{\nearrow} & & \cancel{\nearrow} g * \alpha^{-1} \\
(g \circ j \circ f') \circ m & \xrightarrow{\alpha} & g \circ (j \circ f') \circ m \\
(g * q) * m \cancel{\nearrow} & & \cancel{\nearrow} g * (q * m) \\
(g \circ f \circ i) \circ m & \xrightarrow{\alpha} & g \circ (f \circ i) \circ m \\
\alpha^{-1} * m \cancel{\nearrow} & & \cancel{\nearrow} g * \alpha \\
((g \circ f) \circ i) \circ m & & g \circ f \circ i \circ m \\
\alpha \cancel{\nearrow} & & \cancel{\nearrow} \alpha^{-1} \\
(g \circ f) \circ i \circ m & &
\end{array}$$

Pullback pasting

Proof (cont.)

Insert associator 2-cells α judiciously to decompose into commuting regions:

- ▶ three pentagon coherences
- ▶ two commuting squares by properties of whiskering.

Get the horizontal pasting theorem by transposing pullback squares.

Part 2

Wild internal models of type theory

Develop Dybjer's categories with families (cwf's), generalized to wild categories of contexts. I assume familiarity with 1-categorical cwf's.

Brief recap, GAT of a 1-cwf:

<i>Contexts</i>	<i>Substitutions</i>		
$\Gamma, \Delta : \mathcal{C}_0$	$\sigma, \tau : \mathcal{C}(\Gamma, \Delta)$		
<i>\mathcal{C}-types</i>	<i>\mathcal{C}-terms</i>	<i>Substitution in types</i>	<i>Substitution in terms</i>
$\text{Ty } \Delta : \text{Type}$	$\text{Tm}_\Delta A : \text{Type}$	$A[\sigma]_\Gamma : \text{Ty } \Gamma$	$a[\sigma]_t : \text{Tm}_\Gamma (A[\sigma]_\Gamma)$
<i>Context ext.</i>	<i>Substitution ext.</i>	<i>Display map</i>	<i>Generic element</i>
$\Delta, A : \mathcal{C}_0$	$(\sigma, t) : \mathcal{C}(\Gamma, \Delta, A)$	$p_A : \mathcal{C}(\Delta, A, \Delta)$	$q_A : \text{Tm}_{\Delta, A} (A[p]_{\Gamma_A})$

appropriately quantified.

Higher cwfs in intensional type theory

GAT of a 1-cwf, cont.

Equations need transports along paths:

Functionality

$$[\text{id}]_{\mathbf{T}} : A[\text{id}]_{\mathbf{T}} = A$$

$$[\circ]_{\mathbf{T}} : A[\sigma \circ \tau]_{\mathbf{T}} = A[\sigma]_{\mathbf{T}}[\tau]_{\mathbf{T}}$$

$$[\text{id}]_t : a[\text{id}]_t = a \downarrow_{[\text{id}]_{\mathbf{T}}^{-1}}$$

$$[\circ]_t : a[\sigma \circ \tau]_t = a[\sigma]_t[\tau]_{t \downarrow [\circ]_{\mathbf{T}}^{-1}}$$

Context comprehension

$$p\beta : p_A \circ (\sigma, t) = \sigma$$

$$q\beta : q[\sigma, t]_t = t \downarrow_{[=p\beta]_{\mathbf{T}}^{-1} \cdot [\circ]_{\mathbf{T}}}$$

$$, \eta : (p_A, q_A) = \text{id}_{\Gamma, A}$$

$$, \circ : (\tau, t) \circ \sigma = (\tau \circ \sigma, t[\sigma]_{t \downarrow [\circ]_{\mathbf{T}}^{-1}})$$

For us, explicitly manipulating these transports is **completely unavoidable**.

Higher cwfs in intensional type theory

For us, explicitly manipulating these transports is completely unavoidable:

- ▶ Working in a higher setting: can no longer handwave transports away by appealing to conservativity of extensional TT over set-based fragments of HoTT.
- ▶ Want to find candidate coherence conditions: must look at the paths we're transporting along.

But in this talk I will mostly try to avoid burdening you with this.

Wild cwfs

Definition

A *wild cwf* \mathcal{C} is a model of the GAT of a 1-cwf, where we replace the 1-category of contexts with a wild category of contexts.

Example

Any strict cwf is a wild cwf. In particular, the syntax QIIT (Altenkirch-Kaposi '16) is a wild cwf.

Wild cwf's

Example (Universe model)

Any universe wild categorical \mathcal{U} can be given the structure of a wild cwf:

$\text{Ty } \Gamma \equiv \Gamma \rightarrow \mathcal{U}$ Γ -indexed type families

$\text{Tm } \Gamma A \equiv \prod \Gamma A$ Sections of $A : \Gamma \rightarrow \mathcal{U}$

Substitution is function composition. If $\sigma : \Gamma \rightarrow \Delta$, then

$A : \text{Ty } \Delta \equiv \Delta \rightarrow \mathcal{U}$ \Rightarrow $A[\sigma]_T \equiv A \circ \sigma : \Gamma \rightarrow \mathcal{U}$

$a : \text{Tm } \Delta A \equiv \prod \Delta A$ \Rightarrow $a[\sigma]_t \equiv a \circ \sigma : \prod \Gamma (A \circ \sigma)$

Context extension is Σ , and

the equational components all hold by families of reflexivity proofs.

Structural properties of wild cwfs

Important structural properties of 1-cwfs already hold homotopically in wild cwfs.

Lemma

In any wild cwf \mathcal{C} , terms are sections of display maps.

$$\mathsf{Tm}_\Gamma A \simeq \sum (a : \mathcal{C}(\Gamma, \Gamma.A)), \mathsf{p} \circ a = id_\Gamma$$

Lemma

Substitutions into extended contexts are pairs.

$$\mathcal{C}(\Gamma, \Delta.A) \simeq \sum (\sigma : \mathcal{C}(\Gamma, \Delta)) \mathsf{Tm}(A[\sigma]_\Gamma)$$

Structural properties of wild cwfs

Corollary

If $\sigma : \mathcal{C}(\Gamma, \Delta, A)$ is a substitution into an extended context then

$$\sigma = (p \circ \sigma, q[\sigma]_{t \downarrow [o]_{\mathcal{T}}^{-1}}).$$

That is, every substitution σ into an extended context is determined by its “initial segment”

$$p \circ \sigma$$

and “last element”

$$q[\sigma]_t.$$

What we're aiming for

Classically, cwf's equivalent to full split comprehension categories.

We aim for a similar statement for sufficiently coherent wild cwf's, including the syntax and the universe models.

Concretely, we will prove the following theorem.

What we're aiming for

Theorem

Given a cospan $\Gamma \xrightarrow{\sigma} \Delta \xleftarrow{p_A} \Delta.A$ in the category of contexts of a “2-precoherent” wild cwf \mathcal{C} , there is a weak pullback

$$\mathfrak{P}_{\sigma, A} \text{ :≡ } \begin{array}{ccc} \Gamma.A[\sigma]_T & \xrightarrow{\sigma \cdot A} & \Delta.A \\ \downarrow p & \nearrow \cancel{\beta} & \downarrow p \\ \Gamma & \xrightarrow{\sigma} & \Delta \end{array}$$

When \mathcal{C} is set-based or a universe, these squares are pullbacks for all σ and A , and further this choice of pullbacks is split...

What we're aiming for

Theorem

... for any pullbacks

$$\mathfrak{P}_{\sigma \circ \tau, A} \equiv \begin{array}{ccc} B.A[\sigma \circ \tau]_T & \xrightarrow{(\sigma \circ \tau) \cdot A} & \Delta.A \\ \downarrow & \text{p} \beta^{-1} & \downarrow \\ B & \xrightarrow{\sigma \circ \tau} & \Delta \end{array}$$

and

$$\mathfrak{P}_{\tau, A[\sigma]_T} \mid \mathfrak{P}_{\sigma, A} \equiv \begin{array}{ccccc} B.A[\sigma]_T[\tau]_T & \xrightarrow{\tau \cdot A[\sigma]_T} & \Gamma.A[\sigma]_T & \xrightarrow{\sigma \cdot A} & \Delta.A \\ \downarrow & \text{p} \beta^{-1} & \downarrow & \text{p} \beta^{-1} & \downarrow \\ B & \xrightarrow{\tau} & \Gamma & \xrightarrow{\sigma} & \Delta \end{array}$$

the equality of pullbacks

$$\mathfrak{P}_{\sigma \circ \tau, A} = (\mathfrak{P}_{\tau, A[\sigma]_T} \mid \mathfrak{P}_{\sigma, A})$$

is contractible.

What we're aiming for

Abstracting these properties will give us a definition of *2-coherent wild cwf* that we hope will be of further use.

Coherence for context extension

A technical excursion.

Lemma

Suppose

$$\Gamma \stackrel{\sigma}{\underset{\tau}{\rightrightarrows}} \Delta. A$$

are parallel arrows into an extended context.

There is an equivalence $\text{sub}^=$ that takes

$$e_1 : p \circ \sigma = p \circ \tau$$

and

$$e_2 : q[\sigma]_{t \downarrow [\circ]_T^{-1} \cdot [=e_1]_T \cdot [\circ]_T} = q[\tau]_t,$$

and gives an equality

$$\text{sub}^=(e_1, e_2) : \sigma = \tau.$$

Intuitively, this is because of the previous corollary: extended substitutions are determined by their initial segment and last element.

Coherence for context extension

Note the following composition of maps:

$$\sum (e : p \circ \sigma = p \circ \tau), q[\sigma]_{t \downarrow [\circ]_{\mathcal{T}}^{-1} \cdot [=e]_{\mathcal{T}} \cdot [\circ]_{\mathcal{T}}} = q[\tau]_t$$

$\xrightarrow{\text{sub}^=}$ $\sigma = \tau$

$\xrightarrow{p^*}$ $p \circ \sigma = p \circ \tau$

It will be useful later if this composition were equal to the first projection.

Motivates the following definition.

Coherence for context extension

Recall the cwf equations

$$p\beta : p \circ (\sigma, t) = \sigma$$

$$, \eta : (p, q) = id$$

$$, \circ : (\tau, t) \circ \sigma = (\tau \circ \sigma, t[\sigma]_{t \downarrow [\circ]_{\tau}^{-1}})$$

They interact with unitors and associators of the underlying wild category of contexts in the following diagrams:

$$\begin{array}{ccc} & p_A \circ (p_A, q_A) & \\ p_{A^*}, \eta \swarrow & & \searrow p\beta \\ p_A \circ id & \xrightarrow{\rho} & p_A \end{array}$$

and

$$\begin{array}{ccc} p_A \circ (p_A, q_A) \circ \sigma & \xrightarrow{\alpha^{-1}} & (p_A \circ (p_A, q_A)) \circ \sigma \\ p_{A^*}, \circ \updownarrow & & \updownarrow p\beta * \sigma \\ p_A \circ (p_A \circ \sigma, q_A[\sigma]_{t \downarrow [\circ]_{\tau}^{-1}}) & \xrightarrow{p\beta} & p_A \circ \sigma \end{array}$$

Coherence for context extension

Definition

We say that a wild cwf \mathcal{C} has *coherators for context extension* if every diagram of the previous two forms commutes.

Examples

Cwfs with precategories of contexts automatically satisfy coherences on 2-cells. In universe cwfs, the diagrams above reduce to composites of *refl* paths, and commute definitionally.

Coherence for context extension

Lemma

If \mathcal{C} has coherators for context extension then the composition

$$\sum (e : p \circ \sigma = p \circ \tau), q[\sigma]_{t \downarrow [\circ]_{\mathcal{T}}^{-1} \cdot [=e]_{\mathcal{T}} \cdot [\circ]_{\mathcal{T}}} = q[\tau]_t$$

$$\xrightarrow{sub= \quad} \quad \sigma = \tau$$

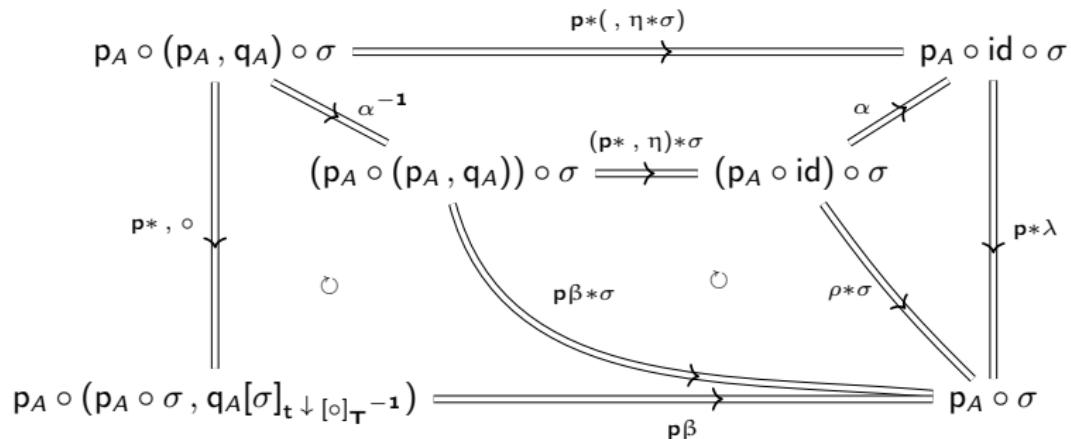
$$\xrightarrow{p^* \quad} \quad p \circ \sigma = p \circ \tau$$

is equal to the first projection.

Coherence for context extension

Proof.

Technical and calculation-heavy, involves this coherence pasting diagram:



Type pentagonators

Type substitution also interacts with the associators of the category of contexts:

For all contexts and substitutions

$$\Gamma \xrightarrow{\rho} \Delta \xrightarrow{\sigma} E \xrightarrow{\tau} Z$$

and \mathcal{C} -types $A : \text{Ty } Z$, there is the pentagon of canonical equalities

$$\begin{array}{ccc} A[\tau \circ \sigma \circ \rho]_T & & \\ \lhd \alpha^{-1} \rhd & & \lhd \rhd \circ \rhd \\ A[(\tau \circ \sigma) \circ \rho]_T & & A[\tau]_T[\sigma \circ \rho]_T \\ \lhd \rhd \circ \rhd & & \lhd \rhd \circ \rhd \\ A[\tau \circ \sigma]_T[\rho]_T & \xrightarrow{\lhd \rhd \circ \rhd} & A[\tau]_T[\sigma]_T[\rho]_T \end{array}$$

Type pentagonators

Definition

A wild cwf \mathcal{C} has *type pentagonators* if all equality pentagons of the previous form commute.

Examples

Set-based and universe cwfs have trivial type pentagonators (in different ways).

2-precoherent cwf

Now we can define

Definition

A wild cwf \mathcal{C} is *2-precoherent* if it has

- ▶ a 2-coherent category of contexts (i.e. triangle and pentagon coherences for ρ, λ, α),
- ▶ type pentagonators,
- ▶ coherators for context extension.

Wild substitution in types

Theorem

Suppose that \mathcal{C} is a 2-precoherent cwf, $\sigma : \mathcal{C}(\Gamma, \Delta)$ a substitution and $A : \text{Ty } \Delta$. Then the substitution

$$\sigma \cdot A := (\sigma \circ p_{A[\sigma]_T}, q_{A[\sigma]_T} \downarrow_{[\circ]_T}^{Tm})$$

makes the commuting square

$$\begin{array}{ccc} \Gamma.A[\sigma]_T & \xrightarrow{\sigma \cdot A} & \Delta.A \\ \mathfrak{P}_{\sigma,A} \equiv & \begin{array}{c} p \downarrow \\ \diagup \quad \diagdown \\ p\beta^{-1} \end{array} & \downarrow p \\ \Gamma & \xrightarrow{\sigma} & \Delta \end{array}$$

a weak pullback in \mathcal{C} .

Wild substitution in types

This means that for every outer commuting square \mathfrak{S} as in

$$\begin{array}{ccccc} B & \xrightarrow{\rho} & & & \\ \downarrow \mu & \nearrow & & & \\ & \Gamma.A[\sigma]_T & \xrightarrow{\sigma \cdot A} & \Delta.A & \\ \downarrow p & & \searrow p\beta^{-1} & & \downarrow p \\ \Gamma & \xrightarrow{\sigma} & \Delta & & \end{array}$$

with $\gamma : \sigma \circ \tau = p_A \circ \rho$, there is a mediating substitution

$$\mu : \mathcal{C}(B, \Gamma.A[\sigma]_T)$$

such that

$$\mathfrak{P}_{\sigma, A} \square \mu = \mathfrak{S}.$$

Wild substitution in types

Proof sketch.

In the following, all smiley faces are equalities.

1. Follow your nose and define

$$\mu := (\tau, q[\rho]_{t \downarrow} \odot)$$

2. By characterization of equality of pullbacks, to show that

$$\mathfrak{P}_{\sigma, A} \square \mu = \mathfrak{S}$$

we can construct equalities

$$\delta : p \circ \mu = \tau$$

$$\epsilon : \sigma \cdot {}^A \circ \mu = \rho$$

such that there is an equality of 2-cells

$$\alpha^{-1} \cdot (p\beta^{-1} * \mu) \cdot \alpha = (\sigma * \delta) \cdot \gamma \cdot (p * \epsilon)^{-1}.$$

Wild substitution in types

Proof sketch (cont.)

3. By definition of μ , can take

$$\delta := p\beta : p \circ \mu = \tau.$$

4. $\epsilon : \sigma^{\cdot A} \circ \mu = \rho$ needs to be an equality of extended substitutions. Define

$$\epsilon := \text{sub}^=(\epsilon_0, \epsilon_1),$$

for which we need equalities

$$\epsilon_0 : p \circ \sigma^{\cdot A} \circ \mu = p \circ \rho$$

and

$$\epsilon_1 : q[\sigma^{\cdot A} \circ \mu]_{t \downarrow \ominus_{(\epsilon_0)}} = q[\rho]_t.$$

Wild substitution in types

Proof sketch (cont.)

5. We can construct

$$\epsilon_0 : \equiv \odot$$

By calculation, constructing ϵ_1 is equivalent to showing that

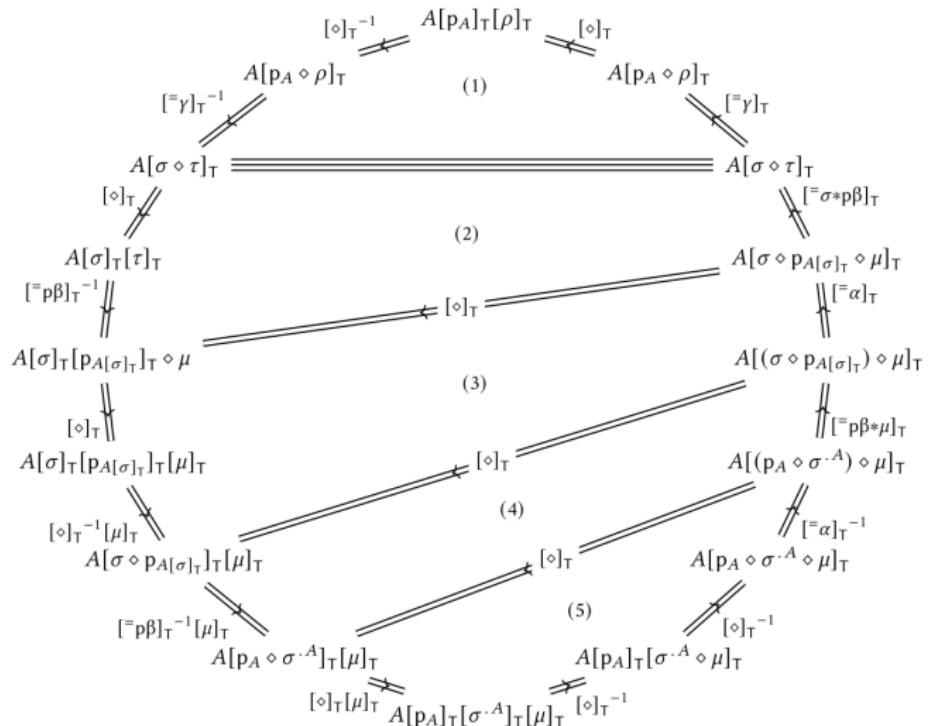
$$q[\rho]_{t \downarrow \odot(\odot)} = q[\rho]_t.$$

6. We do this by showing that

$$\odot = \text{refl}.$$

Some path algebra shows that \odot is equal to the outer boundary of the following diagram:

Wild substitution in types



... which decomposes into type pentagonators and commuting squares.

Wild substitution in types

Proof sketch (cont.)

7. That completes the construction of δ and ϵ . What's left is to show that

$$\alpha^{-1} \cdot (p\beta^{-1} * \mu) \cdot \alpha = (\sigma * p\beta) \cdot \gamma \cdot (p * \text{sub}^=(\epsilon_0, \epsilon_1))^{-1}.$$

Simplifying

$$p * \text{sub}^=(\epsilon_0, \epsilon_1) = \epsilon_0$$

on the right hand side, the rest becomes a straightforward calculation.

Wild substitution in types

So substitution in types is weak pullback in 2-precoherent cwfs.

Lemma

If \mathcal{C} is set-based, the $\mathfrak{P}_{\sigma,A}$ are pullbacks.

Proof.

Using the fact that $\text{CommSq}_c(X)$ are sets in precategories. □

Lemma

If $\mathcal{C} = \mathcal{U}$ is a universe wild cwf, the $\mathfrak{P}_{\sigma,A}$ are pullbacks.

Proof.

By instantiating the type theoretic pullback and Corollary 4.1.9 of (AKL '15). □

Split comprehension

Theorem

Suppose \mathcal{C} is a set-based or universe wild cwf. Then for all

$$B \xrightarrow{\tau} \Gamma \xrightarrow{\sigma} \Delta$$

and $A : \text{Ty } \Delta$, the equality of pullbacks

$$\mathfrak{P}_{\sigma \circ \tau, A} = (\mathfrak{P}_{\tau, A[\sigma]_{\Gamma}} \mid \mathfrak{P}_{\sigma, A})$$

is contractible.

Proof.

For any cospan c , $\text{Pullback}(c)$ is always a set in set-based and 2-coherent univalent wild categories. So the equality is a proposition. It is inhabited by calculation and a simple lemma I'll elide in this talk. □

2-coherent wild cwfs

Abstracting these properties, we arrive at a candidate

Definition

A *2-coherent* wild cwf is a 2-precoherent cwf such that

- ▶ for every σ and A , $\mathfrak{P}_{\sigma,A}$ is a pullback
- ▶ for every τ , σ and A ,

$$\mathfrak{P}_{\sigma \circ \tau, A} = (\mathfrak{P}_{\tau, A[\sigma]_T} \mid \mathfrak{P}_{\sigma, A})$$

is contractible.

Examples

Any set-based cwf, and any universe wild cwf.

Further investigations

- ▶ Are 2-coherent cwfs a good notion of “higher cwf with hom-groupoids”?
- ▶ Determine the initial model of 2-coherent cwfs
- ▶ Study wild *natural models* instead of wild cwfs
- ▶ For me, use 2-coherent wild cwfs to organize the construction of Reedy fibrant inverse diagrams.