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What I'm working on

Motivation: to construct...
» certain functors (Reedy fibrant inverse diagrams),

» into certain categorical structures (sufficiently coherent wild
categories with families),

(similar: §4.5.5.2 of (Kolomatskaia-Shulman '24))
» in HoTT (for reasons).

But you can understand the rest of the talk independently of the
above.



Background to this talk

Model theory of MLTT without K
» Homotopical/co-categorical models
(Awodey, Warren, Voevodsky, Kapulkin, Lumsdaine, Shulman, Uemura, ...)

» Internal models
(Dybjer, Chapman, Altenkirch, Kaposi, ...)



Background to this talk

Model theory of MLTT without K
» Homotopical /co-categorical models — not internal
(Awodey, Warren, Voevodsky, Kapulkin, Lumsdaine, Shulman, Uemura, ...)

» Internal models — not homotopical
(Dybjer, Chapman, Altenkirch, Kaposi, ...)



Roadmap

Looking for an “internal model theory” of homotopical type theory:
Notion of higher model of HoTT in HoTT.

Main desiderata
Should include the syntax and the universe models (the paradigmatic
set-based and oco-models).

Main obstacle
Models of HoTT are co-toposes, the universe is an (oo, 1)-category,
and we don't know how to define (oo, 1)-categories in plain HoTT.



Roadmap

Detour and try to find our way back to a solution:
Wild categories with coherence.

Fruit to pick on the way: HoT T-internal notion of “(n, 1)-categorical
model of type theory?

(i.e. morphisms form (n — 1)-types)



In this talk

In plain HoTT,
» Wild categories and pullbacks (Part 1)
» Wild categories with families (Part 2)

» Coherence conditions for each (throughout)



Part 1



Wild categories

Don't know how to do oco-categories, but still want to manipulate
structure that should be co-categorical, in plain HoTT.

Stepping stone solution: wild categories.



Wild categories

Wild category = “precategory with arbitrary hom-types”.
Definition
A wild category 6 consists of
> Gy : Type
> B(x, y): Type for all x,y : G
» id, o asusual
and unitors and associators:
> p:goid=g
> A:idof ="
» a:(fog)oh=fogoh

These equality types are not propositions!



Wild categories

Examples

» Any precategory (hence any strict category or univalent
1-category).
> Any universe type U:
> Uy =U
> AA B)=A—B
» id, composition as for functions
> p, A« all refl.



Wild categories

Diagrammatic notation:

objects
morphisms (1-cells)
equalities of morphisms (2-cells)

higher equalities (higher cells)

Xayic@o
f.g:6(x,y)
v:f=g



Whiskering

Given
g
£ N
X ——y ﬁw z, y.:g=h
~
h
have

vyxf:gof=hof
v+ f:=ap(_of)y

Similar for left whiskering.



Properties of whiskering

Satisfies equations

refl x f = refl
(yef)t=atsf
yrid=p-vy-pt

etc. by induction.



Equivalence and univalence

Definition
A morphism f : €(x, y) is a wild 6-equivalence if it is biinvertible in
@, i.e. has a section s and a retraction r so that

fos=id and rof =id

Write x ~¢ y if there is a wild equivalence f : 6(x, y).



Equivalence and univalence

Notation
Instead of transport(P, p, x) we write

P
X1p

Definition
For any equal objects e : x = y of a wild category 6, there is a
“dependent identity” morphism

idd(e) : B(x, y)

idd(e) := idxif(x’*)

By induction on e, idd(e) is a B-equivalence with two-sided inverse

idd(e1).



Equivalence and univalence

So with the proof that idd(e) is a 6-equivalence, we get

idtoeqvg
X=y ——X>gy

in any wild category 6.

idtoeqvq, is equal to the HoTT book definition of idtoeqv.



Equivalence and univalence

Definition
@ is univalent if idtoeqvg is a (HoTT) equivalence.

Examples

» Univalent 1-categories 6
(B-equivalence and isomorphism are equivalent,
G-univalence is 1-categorical univalence)

» The universe U

(U-equivalence is type theoretic equivalence,
U-univalence is type theoretic univalence)



Equivalence and univalence

In a univalent wild category 6, we have
Uag : X gy — X =y

satisfying
idtoequg(uag(f, u)) = (f, u).

Abusing notation, we say
idd(uag(f)) = f

whenever f is a 6-equivalence.



2-coherence

Familiar from bicategories:

Definition
A wild category @ has triangle coherences if for all

x5 y &z
there is an equality of equalities
Nfgra-(gxX)="Ffxp

making the triangle commute:

(goid)of:O;:goidof

p*f\\ ///g*A

gof



2-coherence

Definition
A wild category 6 has pentagon coherences if for all

f g h k
VoW SX =Sy Sz

there is an equality

DNfghk:o-(gxX)=Fxp
filling the pentagon

((koh)og)of

w/ Xa

(kohog)of (koh)ogof

ko(hog)of === kohogof
kxa



2-coherence

Definition
A wild category with triangle and pentagon coherences is a
2-coherent wild category.

Usual coherences hold, e.g. the other triangle equalities

(idog)of;;Zidogof (gof)oid:(;Zgofoid
\\ / and \\ /
Axf A P gxp
gof gof

(Hart-Hou '23) call 2-coherent wild categories “bicategories”.



Commuting squares

Generalize the theory of type theoretic pullbacks (Avigad, Kapulkin,
Lumsdaine '15) to the 2-coherent wild setting.

Let € be a 2-coherent wild category.
A cospan c in 6 is an element

c=(AB,C,f,g): Y (AB,C:%), B(A C)x BB, C)

Diagrammatically,



Commuting squares
Definition
A commuting square on ¢ with source X is an element
(ma, mg,7)
of type
CommSq (X) := 2 (ma: 6(X, A)) (ms : B(X, B)), f oma = g omg.

Diagrammatically,

x

ma g

> —
ON<———W

_ms
2
f

The equality 2-cell 7 is relevant in wild commuting squares.



Equality of commuting squares, 1

Characterizing the equality type of CommSq.(X), we get:
Lemma
The equality

mg’

x

—

®
x

e . B
mAl % g = mA,l %/2/ g
A——>C A——C

in CommSq.(X) is equivalent to the type of triples of equalities

€A I Mp = mA’
ép . mp = mB'

niy=(fxea) v (gxepg)”"

by e.g. the fundamental theorem of identity types.



Operations on commuting squares

Relevant to talking about split comprehension in wild cwfs later.

Definition (Pasting)

X "B B -2,
f 6 = n ¢ and & =
|| |~

are commuting squares, then
mDomg D
Iy
E

—
f'of

X

6|6/ = my

E

D —

is a commuting square on cospan (f’ o f, g’) and source X.

fy|fy' = a~(f/*'y)-oz_l~(mg>)<’y/)-a

(not necessary to understand this talk)



Operations on commuting squares

Definition (Precomposition)

If
X ", B
S=ml AL
A*f>C

is a commuting square with source X and m: G(Y, X), there is a
square

y mgom B
6 om = onml /‘é lg
A—C

where e :=a - (y*m)-a~ L.



Operations on commuting squares

Lemma
Precomposition gives a right monoid action of morphisms on
commuting squares:

1. Goid=6
2. Go(gof)=6Guogof,

Proof.

By unfolding definitions and calculating using:
» equations for whiskering
» the right identity triangle coherence for (1)

» the pentagon coherence for (2)



Operations on commuting squares

Suppose

x

@

Il

3

>
> —
N — ™

s,
P
7

ande: X =Y.
We can transport S in the family
CommSq(r 4)(_) : Bo — Type

along e to get a commuting square on the same cospan, but with
source Y.



Operations on commuting squares

Corollary

6¢Ceomm5q(f,g)(,) — 6 g Idd(e_]_)

Proof.

By induction on e, reduces to showing & = G oiid.



Equality of commuting squares, 2

Recall that if

c =

AL c&B
and X : Gy then

CommSq (X) = 2 (ma: B(X, A)) (ms : 6(X, B)), foma=gomg

Take the total space over X : €y and define

CommSq(c) :== 3 (X : 6), CommSq.(X).



Equality of commuting squares, 2

Corollary

The equality
(X’ 6) = (X/7 6/)

of elements of CommSq(c) is equivalent to the type of pairs
e: X=X
and

H:& =& oidd(e).

Proof.
By the equality of X-types and the previous characterization of
transport of commuting squares. O



Pullbacks

Definition
A commuting square

¢ - CommSq(c)

«—— W

(P,B) = ra

DT

T
%
f

Aa

is a pullback if the family of precomposition maps
Po  _:[1x:e) B(X, P) = CommSq.(X)

is a family of equivalences.

So being a pullback is a proposition. Have

is-pullback : CommSq(c) — Type.



Pullbacks

Examples

> Wild pullbacks in strict categories are strict 1-categorical
pullbacks.

» Wild pullbacks in the universe wild categories U are type
theoretic pullbacks (AKL '15).



Equality of pullbacks

Define the type of pullbacks on a cospan c,
Pullback(c) := ¥ (3 : CommSq(c)), is-pullback([3).
Equality of pullbacks is thus equality of the underlying commuting

squares.

Lemma
In a strict category, Pullback(c) is a set for any cospan c.

Proof.
Since CommSq(c) is a X-type of sets. O



Equality of pullbacks

Lemma
In a 2-coherent univalent wild category 6, Pullback(c) is a
proposition for any cospan c.

Proof.
Suppose
(P,R), (P',%’) : Pullback(c).

Need an equality
h:P=P suchthat P =9 oidd(h).
From centers of contraction of (Bo )™* (') and (P’ o ) ' (B), get
m:@(P, P, m' (P, P)

such that

Paom=P and Pom =P



Equality of pullbacks

Lemma
In a 2-coherent univalent wild category @, Pullback(c) is a

proposition for any cospan c.

Proof (cont.)
This implies m is a €-equivalence with two-sided inverse m’. With univalence,
take
h:=uag(m): P = P
Then
P =P om=P oidd(uag(m)) =L oidd(h)

as required.



Pullback pasting

The familiar pullback pasting lemma. In 2-coherent wild categories, need to
construct a 3-cell between 2-cells.

Theorem
Suppose we have a diagram of commuting squares in a 2-coherent wild category

A LA

LA

B —+ B

‘| A4 |

C’—k>C

where the bottom square is a pullback. Then the top square is a pullback if and
only if the pasting is a pullback.



Pullback pasting

Proof.

Uses a number of intermediate lemmas not shown (similar to (AKL
'15)).

Ultimately comes down to showing the equality of certain 2-cells as
in the outer boundary of the following coherence diagram:



kx
ko(g'of’)om:>a:k°g/°f,°m
a% \’1
(kog)of’om

(kog'of’)yom
a” *m/ / p*(f'om)
((kog')of’) (goj Joflom
(P*f)*m% / ‘\%a
gojoflom

((goj)of')yom
2 e
(gojof)om O‘; go(jof')om
e -
(gofoi)om a) go(foi)om
o tem S Howo
(gof)oiom goferom

—1



Pullback pasting

Proof (cont.)

Insert associator 2-cells « judiciously to decompose into commuting
regions:

> three pentagon coherences
> two commuting squares by properties of whiskering.
L]

Get the horizontal pasting theorem by transposing pullback squares.



Part 2



Wild internal models of type theory

Develop Dybjer's categories with families (cwf's), generalized to wild categories
of contexts. | assume familiarity with 1-categorical cwf's.

Brief recap, GAT of a 1-cwf:

Contexts Substitutions
MA:G o,7:6(I, A)

B-types B-terms Substitution in types Substitution in terms
TyA:Type TmaA: Type Alo]¢ : Tyl alo], : Tmr (Alol¢)
Context ext. Substitution ext. Display map Generic element
AA: G (o,t):6(T, A.A) pa:B(A.A, A) da: Tma a(Alplt,)

appropriately quantified.



Higher cwfs in intensional type theory

GAT of a 1-cwf, cont.
Equations need transports along paths:

Functoriality

lid]; : Alid]l+ = A [o]f : Alo o 7]+ = Alol+I7]+

[id], : afid], = ay lid]+ 1 [o]; : a[o o 7], = a[o],[7], 1 [o]y 1
Context comprehension

PR :pac(o,t)=0 aB : qlo, tl, =t =pp)r—1.oly

;M :(pa,ga) =idr.a ,o:(r,t)ooc=(1t00, t[o’]ti[o]_r—l)

For us, explicitly manipulating these transports is completely unavoidable.



Higher cwfs in intensional type theory

For us, explicitly manipulating these transports is completely
unavoidable:

» Working in a higher setting: can no longer handwave transports
away by appealing to conservativity of extensional TT over
set-based fragments of HoTT.

» Want to find candidate coherence conditions: must look at the
paths we're transporting along.

But in this talk | will mostly try to avoid burdening you with this.



Wild cwfs

Definition
A wild cwf €6 is a model of the GAT of a 1-cwf, where we replce the
1-category of contexts with a wild category of contexts.

Example
Any strict cwf is a wild cwf. In particular, the syntax QIIT
(Altenkirch-Kaposi '16) is a wild cwf.



Wild cwfs

Example (Universe model)

Any universe wild categorical U can be given the structure of a wild
cwf:

Tylr=r—-a l-indexed type families
TmrA=MNTA Sections of A: T — AU

Substitution is function composition. If o : I — A, then

ATy A=A—-U = Aol =Aco: T =-U
a:TmpaA=NAA = a[o],:=aocc:MT(Aoco)

Context extension is X, and
the equational components all hold by families of reflexivity proofs.



Structural properties of wild cwfs
Important structural properties of 1-cwfs already hold homotopically
in wild cwfs.

Lemma
In any wild cwf 6, terms are sections of display maps.

TmrA>~Y (a:%(l,T.A), poa=idr

Lemma
Substitutions into extended contexts are pairs.

(I, A.A) ~ 3 (5:%T, A) Tm (Alo]T)



Structural properties of wild cwfs

Corollary
If o : Q(I, A.A) is a substitution into an extended context then

o=(po an[U]w[o]T—l)-

That is, every substitution ¢ into an extended context is determined
by its “initial segment”
poo

and “last element”
Q[U]t'



What we're aiming for

Classically, cwf's equivalent to full split comprehension categories.

We aim for a similar statement for sufficiently coherent wild cwfs,
including the syntax and the universe models.

Concretely, we will prove the following theorem.



What we're aiming for

Theorem
Given a cospan T = A <2 A.A in the category of contexts of a
"2-precoherent” wild cwf @, there is a weak pullback

Aol 225 AA

P ol g )

rN—m—

When @ is set-based or a universe, these squares are pullbacks for all
o and A, and further this choice of pullbacks is split. . .



What we're aiming for

Theorem
.. for any pullbacks
(ooT) A
B.AlcoT]y —— A.A
(paor,A = l
Lo
B—bF— A
and

7,,A[a] oA
B. Aol [y —— T.Ajo]l; —— A.A

PBraolr | Boa = l P l / l
[t ppt

p

B r A

T o

the equality of pullbacks

mUOT,A - (‘BT,A[O’]T | mUVA)

is contractible.



What we're aiming for

Abstracting these properties will give us a definition of 2-coherent
wild cwf that we hope will be of further use.



Coherence for context extension

A technical excursion.

Lemma
Suppose

r=AA

are parallel arrows into an extended context.
There is an equivalence sub~ that takes

e1:poog=porT
and
e :qlo],y [ol+ ~*[Feslr-loly — al7],,
and gives an equality

sub (e1, &) :0=T.

Intuitively, this is because of the previous corollary: extended substitutions are
determined by their initial segment and last element.



Coherence for context extension

Note the following composition of maps:

Y (e:poo=porT), q[U]ti ol L [=elr-lolr — q[T]t

sub™
c=T

p*
— poo=poT
It will be useful later if this composition were equal to the first

projection.
Motivates the following definition.



Coherence for context extension
Recall the cwf equations
B po(o,t) =0
m:(p,q)=id
;O ! (T7 t) 00 = (7—00—7 t[o—]ti[o]-rfl)
They interact with unitors and associators of the underlying wild category of

contexts in the following diagrams:

pa o (pa,da)

Pa / \‘\ﬁ

AOld¢PA

and

Pa©o(pa;qa)oc === (pao(pa,qa))oc

PA*yOﬂ' H'pﬁ*o

pao(paco,qalol (o, -1) =>B= pacao
P



Coherence for context extension

Definition
We say that a wild cwf @ has coherators for context extension if
every diagram of the previous two forms commutes.

Examples

Cwfs with precategories of contexts automatically satisfy coherences
on 2-cells. In universe cwfs, the diagrams above reduce to
composites of refl paths, and commute definitionally.



Coherence for context extension

Lemma
If @ has coherators for context extension then the composition

Y (e:poo=por), Aol y g 1 1=e)y o), = AlTh:
sub™ o=

p*
—% poo=porT

is equal to the first projection.



Coherence for context extension

Proof.
Technical and calculation-heavy, involves this coherence pasting diagram:
p*(, n*o) )
pao(pa,qa)oc > paocidoo

\%1 y//
(p* , n)xo

(Pao(pa;qa)) oo == (pacid)oc

© pR*o pxo

pAo(pAoaqu[o—]tl[o]Tfi) 5 7 paoco
p



Type pentagonators

Type substitution also interacts with the associators of the category of contexts:
For all contexts and substitutions
ro“asenz

and G-types A : Ty Z, there is the pentagon of canonical equalities

Alr oo o pl+
[:O‘_i]T/ X[O]T
Al(r 0 o) o ply Alrlelo o ol

[ol+ X % [ol+

Alroolt[ply == Alrlilol+[rl+

olrlrlr



Type pentagonators

Definition
A wild cwf 6 has type pentagonators if all equality pentagons of the
previous form commute.

Examples
Set-based and universe cwfs have trivial type pentagonators (in
different ways).



2-precoherent cwfs

Now we can define
Definition
A wild cwf 6 is 2-precoherent if it has

» a 2-coherent category of contexts (i.e. triangle and pentagon
coherences for p, A, ),

> type pentagonators,

» coherators for context extension.



Wild substitution in types

Theorem

Suppose that @ is a 2-precoherent cwf, o : G(I', A) a substitution
and A : Ty A. Then the substitution

o= (0o PA[a]Tan[a]T¢[O] 1)

makes the commuting square

Aol 225 A.A

T

—>A

a weak pullback in 6.



Wild substitution in types

This means that for every outer commuting square & as in

with v : 007 = pa o p, there is a mediating substitution
1 6(B, T Alo]y)

such that
mU,A op=6.



Wild substitution in types

Proof sketch.

In the following, all smiley faces are equalities.

1. Follow your nose and define
pe=(7,alpl1 @)

2. By characterization of equality of pullbacks, to show that

Poaopu=6
we can construct equalities
d:pou=r
. A
e:oou=p

such that there is an equality of 2-cells

a (PR p)a=(0x8) v (pre)



Wild substitution in types

Proof sketch (cont.)
3. By definition of p, can take
0:=pP:pou=r.
4. ¢:0""op=p needs to be an equality of extended substitutions. Define
€ :=sub™ (e, €1),
for which we need equalities
) A
€:pooc "ou=pop

and
LA
€e1:q[c "o Mltl’@(eo) = q[p],.



Wild substitution in types

Proof sketch (cont.)

5. We can construct

€ =0

By calculation, constructing €1 is equivalent to showing that
alol. L @@, = alel.-

6. We do this by showing that
® = refl.

Some path algebra shows that ® is equal to the outer boundary of the
following diagram:



Wild substitution in types

[°|T_l% Alpaltlplr \[O]T

Alpaoplr o~ Alpaoplr
[:Y]‘% \\[\:V]T
Aloort|y Aloort]y
0]/ \\\\[:U*PNT
(2)
Alolrlrly Alo o pajo), o plr
[:PBlT"/} / [olt / }‘\[:a]T
Aloltlpaiollron Al(o o pafor,) o plv

®)
°]T%* / ﬂ[:PE*F]T
Alolrlpator ]kl lelr Al(paca?)oplr
fohr™ M\ / / //[:a]{'
Alo o pajol, Irlplr Alpaootopls
mm;‘w?\ / . /ﬁT
AlpaoaAlyluly Alpaltlo-?oply

(el ot
T AlpalrloArlply T

..which decomposes into type pentagonators and commuting squares.



Wild substitution in types

Proof sketch (cont.)
7. That completes the construction of § and e. What's left is to show that
a ™t (pB Tt xp)-a=(oxpp)-y-(p*sub (o, €x)) .

Simplifying
p * sub™(eo, €1) = €0

on the right hand side, the rest becomes a straightforward calculation.



Wild substitution in types
So substitution in types is weak pullback in 2-precoherent cwfs.

Lemma
If € is set-based, the B, a are pullbacks.

Proof.
Using the fact that CommSq.(X) are sets in precategories. O

Lemma
If € = U is a universe wild cwf, the B, 4 are pullbacks.

Proof.
By instantiating the type theoretic pullback and Corollary 4.1.9 of
(AKL '15). O



Split comprehension

Theorem
Suppose B is a set-based or universe wild cwf. Then for all

BLHTSA
and A : Ty A, the equality of pullbacks
Boor,a = (Braply | Boa)
is contractible.

Proof.

For any cospan ¢, Pullback(c) is always a set in set-based and
2-coherent univalent wild categories. So the equality is a proposition.
It is inhabited by calculation and a simple lemma I'll elide in this
talk. Ol



2-coherent wild cwfs

Abstracting these properties, we arrive at a candidate

Definition

A 2-coherent wild cwf is a 2-precoherent cwf such that
» for every o and A, P, 4 is a pullback

> for every 7, o and A,
sBO'O‘I',A = (mT,A[U]T ’ g'BU,A)
is contractible.

Examples

Any set-based cwf, and any universe wild cwf.



Further investigations

> Are 2-coherent cwfs a good notion of “higher cwf with
hom-groupoids"?

» Determine the initial model of 2-coherent cwfs
» Study wild natural models instead of wild cwfs

» For me, use 2-coherent wild cwfs to organize the construction
of Reedy fibrant inverse diagrams.
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